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Abstract ii

Abstract

Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for

studying structural and dynamical properties of disordered and partially ordered materi-

als, such as glasses, polymers, liquid crystals, and biological materials. In particular, two-

dimensional(2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magic-

angle-spinning (MAS) conditions have been used to measure structural constraints on the

secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad

class of diseases such as Alzheimer's are known to contain a particular repeating structural

motif, called a /5-sheet. However, the details of such structures are poorly understood, pri-

marily because the structural constraints extracted from the 2D NMR data in the form of

the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly

model-dependent.

Inverse theory methods are used to extract Ramachandran angle distributions from a

set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD)
data. This is a vastly underdetermined problem, and the stability of the inverse mapping
is problematic. Tikhonov regularization is a well-known method of improving the stability

of the inverse; in this work it is extended to use a new regularization functional based

on the Laplacian rather than on the norm of the function itself. In this way, one makes
use of the inherently two-dimensional nature of the underlying Ramachandran maps. In

addition, a modification of the existing numerical procedure is performed, as appropriate for

an underdetermined inverse problem.

Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using

a simulated data set. The results show excellent convergence to the true angle distribution

function g{(j),ii) for the S/N ratio above 100.
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Chapter 1

Introduction

Solid-state nuclear magnetic resonance (NMR) can be used to study the structural and dy-

namical parameters of disordered and partially ordered materials such as glasses, polymers,

liquid crystals, and biological materials. These parameters are not sharply defined but char-

acterized by probability distribution functions instead. Such distributions are mapped into

distributions ofNMR parameters, such as the chemical shift, the dipolar and the quadrupolar

interaction, relaxation, spin diffusion, and exchange rates and others. Then, the structural

and dynamical information contained in NMR spectra can be extracted by means of "in-

verse theory" . A wide variety of inversion techniques have been developed and applied to

solid-state NMR [1, 2, 3, 4, 5]. The extraction of a distribution in one parameter from NMR
data, which may be multi-dimensional, is concerned with one-dimensional inverse problems.

On the other hand, two-dimensional inverse problems have been addressed to determine dis-

tributions in two parameters like Ti & T2 relaxation times in porous materials [6], torsion

angles and orientational angles in polymers [7], chemical shift and quadrupolar parameters in

inorganic disordered materials [8]. The extraction of the Ramachandran angles distribution

function, g{(f>,ip), is an example of two-dimensional inverse problems that we discuss in this

thesis. Here, we discuss conformational properties of polypeptide chains very briefly and

then introduce the Ramachandran plot.

Various three-dimensional arrangements of atoms that are inter-convertible without break-

ing covalent bonds are generally described as conformations. Different conformations of a

protein molecule must have the same chirality of atoms, i.e. the same configuration. Three-

dimensional aspects of structure are especially important for macromolecules, in which many
bonds can rotate and can make many conformations. Macromolecules tend in general to be

very flexible, so no one conformation predominates. Proteins, on the other hand, have used

this flexibility to adopt relatively fixed conformations that are determined by non-covalent

interactions among atoms that are distant in the covalent structure. There is a hierarchy

of levels of protein structure. The primary structure is the covalent structure, which is

defined by the amino acid (residue) sequence. The secondary structure, which is the topic

of our discussion, is the local conformation of the polypeptide backbone and exhibits the

folding of the polypeptide chain in space. The tertiary structure is the folded conformation

of proteins.

How to define a conformation is not obvious. Even a simple molecule might be considered

to exist in an infinite number of conformations if the positions of the atoms are defined with

sufficient accuracy, because bond lengths vary by ± 0.05 A° and bond angles by about ± 5°

at 0°K temperature. For this reason, only the energetically most stable arrangements are

usually classified as individual conformations. In the case of proteins, each amino acid

residue in a polypeptide chain can exist in a number of conformations, perhaps eight on

average. Therefore, a small polypeptide chain of 100 residues might be able to adopt up to
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8^°^ conformations. Some of these theoretical conformations are not allowed because they

would have atoms overlapping in space (the excluded volume effect) . It is not yet possible to

calculate the number of conformations that are indeed possible, and only rough estimates can

be given. Since so many conformations are possible, the conformational properties of random

polypeptides are best calculated statistically using the mathematical procedures developed

for synthetic polymers. Such calculations require detailed knowledge of the conformational

properties of the monomeric unit of the polymer; i.e. the relative energies of all its possible

conformations.

A portion of the backbone of a polypeptide chain is shown in Fig. 1.1, illustrating the

conventions used in describing polypeptide conformation. The peptide bond is usually planar

Figure 1.1: Perspective drawing of a segment of polypeptide chain comprising two peptide

units. The limits of a single residue (number i of the chain) are indicated by the

dashed lines. The polypeptide chain is shown in the fully extended conformation,

where
(f)
= ip = u =180°. Reproduced from [9].

because of its partial double bond, and the group of atoms shown in Fig. 1.2 usually acts as

a rigid unit. For this reason, this group is often designated a peptide unit. The unit more

—Cf o

Figure 1.2: Peptide unit. Reproduced from [9].

commonly used is the residue, in which all the atoms originate from the same amino acid.
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Rotations about the bonds are described as torsion or dihedral angles, which usually lie

in the range -180° to +180°. Rotation about the N-C* bond of the peptide backbone is

denoted by the torsion angle
<f),

rotation about the C°-C' bond by ?/) and that about the

peptide bond (C—N) by cj. The maximum value of 180° is given to each of the torsion

angles in the maximally extended chain, as shown in Fig. 1.1, when the N, C" and C atoms

are all trans to each other.

Two best known and most easily recognized secondary structures of the polypeptides

are the right-handed a-helix and the ^-sheets. Fig. 1.3 shows the structure of right-handed

a-helix. This residue has 3.6 residues per turn and a translation per residue of 1.50 A°,

Figure 1.3: The classical right-handed a-helix. Reproduced from [9].

which gives a translation of 5.41 A° per turn. After the a-helix, the second most regular and

identifiable conformation adopted by homopolypeptides is the ;9-sheet, Fig. 1.4. The basic

unit is the ^S-strand, with the polypeptide almost fully extended; this can be considered

a special type of helix with 2.0 residues per turn and a translation of 3.4 A° per residue.

The /3-strand conformation is stable only when incorporated into a /3-sheet. There are

several other type of conformations for polypeptides, such as the left-handed a-helix, the

right-handed 7r-helix and others.

The possible values of the torsion angles,
<f)
and ^p, are constrained geometrically due

to steric clashes between non-neighboring atoms. The permitted values of (p and ip were
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Figure 1.4: A single ;9-strand (A) and its incorporation into flat parallel (B) and antiparallel

(C) ^-sheets. Reproduced from [9].

first determined by Ramachandran and colleagues, using hard-sphere mod,els of the atoms

and fixed geometries of the bonds. The permitted values of (j) and 0 are usually indicated

on a two-dimensional map of the
(f)
— ip plane, called Ramachandran plot. For instance.

Fig. 1.5 A illustrates the Ramachandran plot for an Ala(nine) residue. The normally allowed

values, for which there is no steric overlap, are shaded and the regions enclosed by a solid

line are the partially allowed regions. The connecting regions enclosed by the dashed lines

are permissible with slight flexibility of bond angles. The part of the total area that is fully

allowed is about 7.5 % and the part that is partially allowed is about 22.5% , which gives

a quantitative measure of the limitations on flexibility of the polypeptide chain. Gly(cine)

residues have no C^ atom and so the restrictions on allowed conformations are much less

severe, as shown in Fig. 1.5 B. The fully allowed area is 45% of the total area and 61%
area is partially allowed. Fig. 1.6 shows a Ramachandran plot on which the positions of

diflferent types of the polypeptides conformations are illustrated. The /3-sheet conformation

of peptides and proteins plays an important role in the strucural investigations of Alzheimer's

plaque fibrils. Amyloid fibrils are filamentous structures, with typical diameters of lOnm and

lengths up to several micrometers, formed by numerous peptides and proteins with different

sequences and molecular weights. Biomedical interest in amyloid fibrils arises from their

occurrence in amyloid diseases, including Alzheimer's disease, type 2 diabetes, Huntington's

disease and prion disease. X-ray fiber diffraction shows that amyloid fibrils contain cross-^

strutural motifs, i.e. extended ^-sheets in which the /3-strand segment run approximately

perpendicular to, and the intermolecular hydrogen bonds run approximately parallel to, the

long axis of the fibril. In the case of fibrils formed by the full-length /5-amyloid peptide

associated with Alzheimer's disease (A/5i_4o), several molecular models have been proposed.

A strucural model for A^i_4o that is recently developed based on experimental constraints

from solid state NMR [10] is shown in Fig. 1.7. Also, Fig. 1.8 a illustrates transmission

electron microscope images of A/5i_4o fibrils. In Fig. 1.8 (b-d) 2D ^^C-^^C chemical shift

correlation spectrum of A/3i_4o fibril is shown. Backbone torsion angles (j) and tp in A^i_4o

samples have been investigated and the presence of non-/3-strand conformations has been

detected. The data obtained through experiments are compared with the simulations based
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r

Figure 1.5: Ramachandran plots of the permitted values of (j) and ip angles. Each two-

dimensional plot is continuous at the edges, because a rotation of —180° is the

same as one of +180°. The original plots that considered only repulsions between

hard-sphere atoms are shown in A and B for Ala and Gly residues, respectively.

Reproduced from [9].

on "constant-time finite-pulse radio-frequency-driven recoupling" (fpRFDR-CT), "double-

quantum chemical shift anisotropy" (DQCSA) and "two-dimensional magic-angle spinning

exchange" (2D MAS exchange). Simulated data are obtained for single pairs of and 0

angles and are fitted on top of the spectrum Fig. 1.9. The discrepancy between the measured

data and the simulated data, specially in fpRFDR-CT measurements. Fig. 1.9 a, for each pair

of {(j),ip) indicates that a distribution of torsion angles, g{^, 0), is needed to best characterize

the secondary structure of peptides and proteins. We adopt a different approach to extract

this distribution, instead of fitting the calculated data to the measured spectrum, we will try

to extract the possible orientations of (j) and ip angles through inversion. For this purpose,

one can calculate the basis spectra by employing suitable solid state NMR techniques and

construct the kernel K{uj;^,ip), each column in the kernel is a basis spectra. Then the

data, s(a;) can be measured through experiments that correspond to these NMR techniques.

Finally, by applying appropriate inversion techniques, the distribution of the torsion angles,

g{^,tp) can be obtained by solving the following equation

s{u) = / / K{uj\4),ip)g{<j),il))d(j)dip. (1.1)
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180

180

Figure 1.6: The positions of the regular conformations of polypeptides on a Ramachandran

plot. The regular conformations are a^, the right-handed a-helix; aL, the left-

handed a-helix; o, the antiparallel /5 — sheet; •, the parallel — sheet; 3, the

right-handed 3io-helix; tt, the right-handed 7r-helix; A, polyPro I, polyPro II,

and polyGly II. Reproduced from [9].
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Figure 1.7: Structural model for A/9i_4o fibrils, consistent with solid state NMR constraints

on the molecular conformation and intermolecular distances and incorporating

the cross-;9 motif common to all amyloid fibrils. Residues 1-8 are considered fully

disordered and are omitted, (a) Schematic representation of a single molecular

layer, or cross- unit. The yellow arrow indicates the direction of the long axis of

the fibril, which coincides with the direction of intermolecular backbone hydrogen

bonds. The cross- unit is a double-layered structure, with in-register parallel -

sheets formed by residues 12-24 (orange ribbons) and 30-40 (blue ribbons), (b)

Central A(5i_4o molecule from the energy-minimized, five-chain system, viewed

down the long axis of the fibril. Residues are color-coded according to their

sidechains as hydrophobic (green), polar (magenta), positive (blue), or negative

(red). Reproduced from [10].
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Figure 1.8: (a) Transmission electron microscope images of negatively stained amyloid fibrils

after 14-day incubation of a 0.5 mM A/3i_4o solution. A 3x expansion (Inset)

shows fibrils with the smallest diameters observed, (b) 2D ^^C-^^C chemical shift

correlation spectrum of A/3i_4o fibril sample SU7, showing resonance assignment

paths for the seven uniformly ^^N- and ^^C-labeled residues in this sample, (c)

Expansion of the aliphatic region of the 2D spectrum of SU7. (d) Aliphatic

region of the 2D ^^C— ^^C chemical shift correlation spectrum of A/9i_4o fibril

sample SU6. Reproduced from [10].
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Chapter 2

Inverse Theory

2.1 Defining inverse problems and ill-posedness

To introduce and illuminate inverse problems, we will use a simple ID example. Consider an

NMR experiment that yields a single lineshape with the lineshape function K{uj,x), called

the kernel, and its position is defined by a parameter x. A superposition of n lines with

different Xi's, weighted by their relative abundances gi = g{xi), generates a spectrum. The

spectrum s{u) can be measured at m discrete frequency points ojj and is given by

n

^i^j) = ^K{uj,Xi)g{xi), (2.1)

i=l

The components gi 's form the vector of the relative abundances g, the data vector s has the

components Sj 's and K is an m x n matrix that provides the mapping between g and s. In

practice we are interested in determining quantities like g{x), which is not directly accessible

by experiment, from the knowledge of its mapping s{uj) and the basis spectra in K{lj,x),

i.e. inverting the equation s = Kg. A least squares (LS) approach minimizes the distance

between s and Kg, i.e.

||Kg-sf -^ min, (2.2)

where ||v|| denotes the Euclidean norm of the vector v. The operator K often represents the

continuous version of Eq. 2.1 stated as a Fredholm integral equation of the first kind (FIE):

s{uj) = g{x)K{u,x)dx

,

(2.3)

Jx

i.e., the distribution function g{x) is mapped linearly onto the spectrum s(w) by the (real

or complex) kernel function K{u, x) which is "well-behaved" :

/ / \K{lj,x)\^ dwdx = const. < oo (2.4)

JW J X

In practice determination of g from s through FIE of the first kind is an ill-posed problem

in the sense introduced by Hadamard [11]: at least one of the three criteria of existence,

uniqueness, and stability is not satisfied:

Existence, meaning that for any s there exists a solution g, is not satisfied if the experi-

mental data s{uj) is not within the range oi K{u},x). This happens because the kernel

k{uj,x) does not describe random noise, while in experimental data analysis we often

measure noisy data

s'- = s{ujj)+aajej, j = l,2,...,m (2.5)
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where €i, C2, • • • , Cm are m independent standard normally distributed random variables,

a is a usually unknown scaling factor of the error and ai, (72, . .
.

, am are given by an

error model. (If for example ctj = 1, the data are affected by absolute errors of the size

a. If e.g. Ci = g{xi) the data are affected by relative errors of size a.) Thus, to fulfill

the existence requirement, we write

s{u}) = k(u},x)g{x) + a{uj)
, (2.6)

and calculate a function g" which minimizes the discrepancy between s and Kg, i.e.

min
{ II

k{u, x) g{x) - s{u)
\\]

=
\\
k{u, x) g''{x) - s{lo)

||
(2.7)

This is called the generalized, or pseudo-inverse approach that determines "the best

fit" to the data. Obviously, the function g" found according to pseudo-inverse approach

is just an approximation to the true function g{x).

Uniqueness, saying that for any s there exists one and only one solution g, is violated by

the coexistence of several solutions 5^f(x) {gl{x) 7^ gl{x) \i a^b), with similar misfits

for a given spectrum s{uS). To obtain a unique solution, an additional constraint could

be added to the problem and inverse solution which has the minimal norm be chosen.

Stability, ensuring that the solution g is continuously dependent on s, is not fulfilled if two

"adjacent" mappings Si,S2 do not have "adjacent" origins ^1,^2- If so, then the fact

that

WKgl-KglW^Ws.-s^W (2.8)

is a small number does not ensure us that

II 9l - 9l II
(2-9)

is also small. Lack of stability is a distinguishing feature of ill-posed inverse problems

and must be dealt with.

2.2 Restoring Stability Via Regularization Methods

To stabilize the solution of an ill-posed inverse problem, we have to impose extra restrictions

on g and therefore to enforce that the quantity
|| 5i

- ^2 II
becomes small whenever the

quantity
|| Si - S2

||
is small, while solving Eq. 2.1. This is called a regularization [12] of

Eq. 2.1. There are several methods of regularization such as truncated singular-value decom-

position (SVD), Miller's regularization, maximum entropy, projection, iteration, Tikhonov

regularization, non-negativity, and others. Here, we discuss just three techniques of stabi-

lization: Discretization, Truncated SVD, and Smoothness (Tikhonov regularization). Out of

all different methods, Tikhonov regularization is the best-known one and there exists much

mathematical literature [13] about it.
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2.2.1 Singular Values

A singular value expansion of the kernel K{u, x) is

K{u},x) = J2CiM^)Mx)
'

(2-10)

1=1

where the singular values and the singular functions Ui{uj) and vi{x), which are orthogonal,

satisfy the condition f xK{u!, x)vi{x)dx — Qui{ijj). The solution to the LS problem of Eq. 2.7,

5'*^(x), can be characterized by projecting the spectrum onto the singular function as

g^ix) = f]^(«iM>5M)^;,(a;) (2.11)

1=1
^'

Here (...,...) stands for the scalar product. Suppose the spectra Si(ti;) and S2{u) are

produced by the distributions gfix) and 52 (^)) ^-^en the LS discrepancy in the parameter

domain is

II fM - gUx) ir = E 72 («'('^)' ('^(^) - ^^l'^))}' (2-12)

1=1 ^'

It is obvious that small singular values increase the risk of an unstable solution. For small

0. II PiW - P2(^) II
is not small even if

||
Si(a;) - S2(w)

||
is. Therefore, the decay of the

singular values can be a good measure for ill-posedness. In the discrete case, the singular

value decomposition (SVD) of the matrix K is

K = UOV^ (2.13)

where U and V are made up of the column vectors U; and v; which are the eigenvectors of

KK^ and K^K, respectively. U is an m x n sized column-orthogonal matrix, O an n x n

sized diagonal matrix of singular values 01,02,..., o„ , and V is an n x n sized orthogonal

matrix. In this case, Eq. 2.11 becomes

g'^ = E - (^' • "0 s (2.14)

here, n is the number of basis spectra in the kernel.

2.2.2 Discretization

By using a discrete grid Xi and ujj and noting that A(xi) is the interval size at Xi the

parameter domain can be discretized and the continuous Eq. 2.3 be approximated by

s{yj,) = J2 K{uJj,Xi) g{xi) A{xi) (2.15)

i=l

Such discretization strongly restrict the solution g" and already provide regularization. By

changing the grid density, i.e., changing n, we can control the degree of stabilization. When
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n is too large, we end up with artificial peaks in the structure of the approximated g'^ {x)

.

As the density of the grid decreases, the solution becomes stable {i.e. the fluctuations in

g'^ix) becomes small). But, there is an optimal value for the grid density beyond which the

result is oversmoothed and some of the features of the solution may be lost. Therefore it is

inevitable to choose a suitable degree of stabilization for an underlying s{ij).

2.2.3 Truncation

Instead of using a lower grid density to stabilize the solution g^ix), we may keep the grid

density, n, unchanged but truncate the series of Eq. 2.15 at a certain threshold rith < n.

Again,by decreasing nth the solution can be stabilized, and beyond an optimal value, some

features of the solution will not be retrievable.

2.2.4 Smoothness

Generally speaking, regularization can be done by generahzing the minimization problem,

Eq. 2.7, with additional constraints, T {g{x)) , i.e.

\\k{u,x)g{x)-s{uj)f + \T{g{x)) -^ min

.

(2.16)

Here A is called regularization parameter, which is responsible for the quality of the result

given by a regularization method. This parameter is special in the sense that for different

noise levels different optimum values of lambda are necessary to keep the information on

g{x) and the compatibility with the data s{oj). The very well-known and powerful functional

T {g{x)) is
II
iig{x) |p where L is an operator for which the identity or the second derivative

is frequently used. The choice of L = I, i.e. minimizing the norm of g, is suggested by

Tikhonov [14]. Minimizing the norm of the second derivative oi g, i.e. L = ^, is another

possibility that provides smooth solutions and is due to PhilUps [15]. Usually, the term

"Tikhonov regularization" refers to both. For an arbitrary function / The quantity
|| / |P is

given by

||/||2 = lf{x)dx (2.17)

Maximum entropy method (MEM) is another popular regularization method for which the

regularization term is, for example, the Shannon entropy [16]:

T{g{x)) = -
J

g{x) \og[g{x)] dx (2.18)

Tikhonov regularization, which asks for a small norm of ^^(a;), modifies Eq. 2.14 to

_<7

Sa = Ej^h.uDs (2.19)

Here, the degree of smoothing not only depends on n but also depends on the regularization

parameter A. Obviously, increasing A leads to a higher degree of smoothness of g^ that

stabilizes the solution, since the existence of A in^ blocks the fluctuations of g^ due to
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small singular values. If this parameter is chosen too small, the solution g^ will show artificial

peaks. Otherwise, if it is chosen too large, the solution will be oversmoothed. Therefore

a robust procedure for the determination of an appropriate value for the regularization

parameter is necessary.

2.3 Determination of the regularization parameter

It is essential to develop and apply a procedure to obtain an appropriate value for the reg-

ularization parameter A. Many different methods are developed and studied to determine

optimum values of this parameter. For example, the discrepancy method [17] in which one

looks for a regularization parameter that is large enough to provide the most stabilized

solution but that still leads to sufficient agreement between the data and the fit. There

are other methods like the predictive minimum mean square error method [18] and the

Provencher method [19, 20]. However, the self-consistent (SC) method developed recently

by Honerkamp and Weese [18, 21] has been by far the most powerful procedure. Refer-

ences [18, 22] contain a comparison of the SC-method with other ones which are usually

used for the determination of the regularization parameter. This comparison shows that the

results obtained with the SC-method are much better and more reliable than the results

obtained with the other methods. Also, various procedures used for the determination of the

regularization parameter require the calculation of intermediate solutions for several values

of this parameter, before the final solution is reached. For every step in this calculation

matrix inversions are required, leading to enormous computational eflFort. This difl&culty

does not arise in SC-method, since a generalized singular-value decomposition [23] is used.

Consequently, time and memory needed for the calculations is reduced by this decomposition

and the computer program based on this procedure runs on a personal computer.

In this section, we explain the idea of the SC-method and present the notations used

in this method. In section 2.5, we shall discuss how Honerkamp and Weese justify that

the determination of an optimum value of the regularization parameter A is done using the

SC-method. This will followed by calculating the solution of Fredholm integral equations of

the first kind based on Tikhonov regularization.

In order to define the SC-method, consider the error of the estimate gl obtained by

Tikhonov regularization, i.e.

d, = 11^
- 9lf (2.20)

This error is a realization of a random variable Dg whose expectation value, EDg depends

on the function g, the regularization parameter A and the size of the error a,

EDg = EDg{g,X,a), (2.21)

and the best estimate for the regularization parameter should minimize this quantity

= 0. (2.22)—EDg{g,fi,a)
ii=\

In practice this equation can not be solved, because the function g is not known. The idea

of the SC-method is to replace the function g in Eq. 2.22 by g^, the best estimate that can





Chapter 2. Inverse Theory 15

be obtained from the data. Therefore, the equation that defines an optimum value Xsc for

the regularization parameter is

—EDM,iJi,a) = 0. (2.23)

If the value Xsc leads to a good estimate pj for the function g, the replacement of the function

g by gl is justified and Eq. 2.23 should define a good value for the regularization parameter.

Thus, by solving Eq. 2.23 the regularization parameter is determined in a self-consistent

manner. The Monte Carlo simulations proposed in refs. [18, 22] show that the values for the

regularization parameter obtained with this procedure are only slightly different from the

optimal value defined by the minimum of EDg{g, A, cr).

In many cases the scaling factor a is not known and in order to apply the SC-method to

those cases the scaling factor a in Eq. 2.23 should be replaced by a proper estimate a. In

order to get an estimate for the scaling factor, we consider the misfit

d, = K-KglW' (2.24)

as a realization of a random variable depending on the function g, the regularization param-

eter A and the scaling factor a:

ED, = ED,{g,\a).
'

(2.25)

By comparing the misfit ds with the expectation value EDg, an estimate for the scaling

factor can be defined as

ds = ED,{g,X,d-). (2.26)

Again one should replace the function g in Eq. 2.26 by 5^, since in practice the function g is

not known. And, therefore, the estimate a for the scaling factor a is determined by solving

the equation

ds = EDs{glX,a). (2.27)

Now the scaling factor in Eq. 2.23 can be replaced by the estimate a and the optimum value

for the regularization parameter is determined by solving the equation

—ED,{gl,ii,a) = 0. (2.28)

2.4 Error intervals

Since the solution of Fredholm integral equations is obtained from noisy data, it is necessary

to estimate the infiuence of the data errors on the result. This can be done by calculating

confidence intervals, which are defined in such a way that the true result is in the interval

with a probability of 68%.

The result obtained by a regularization method is affected by two errors, one is a bias

caused by the regularization and the other is a statistical error caused by the data error. Since

the bias can not be estimated, confidence intervals can not be defined for the result obtained
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by a regularization method. In spite of this fact, for any fixed regularization parameter,

error intervals which describe the influence of the data error on the result are useful for the

interpretation of the result.

Such error intervals can be defined by the influence of errors of the size ao"j in the data

sf on the result. For the result g^ these intervals are given by

[glix) - cj {gl{x)) , glix) + a {gl{x))] , (2.29)

where the quantity a (5j(x)) must be calculated for any fixed regularization parameter.

2.5 Theory

2.5.1 Description of the solution method

The solution of Fredholm integral equations of the first kind, Eq. 2.3, is defined as the

function g^, which minimizes the quantity

^(^) = E ^2 (< -
(/ ^(^' x)9{x)dx^

) + A
II
L p IP , (2.30)

where m is the number of data points. In this minimization if the function g is known to be

positive, the constraints

g{x)>0, (2.31)

must be considered. For simplicity, the vector s''' and the operator K' are introduced by

sr = -sh i = l,...,m, (2.32)

{K'g)i = - [ K{iJ,x)g{x)dx, i = l,...,m. (2.33)

With these notations ^(A) reduces to

V{X) = \\s"'-K'gf + \\\Lgf. (2.34)

If no constraints must be considered, the function g^, given by the minimum of V{X), can

be written explicitly as

gl^K'-\X)s'\ (2.35)

where K'~^(A) is given by

K'~' (A) = (k'*K' + A L'l)
''

K'*

.

(2.36)

And, explicit expressions can be obtained for the quantities a{gl{x)), EDg{g,X,a) and

EDs{g,X,(r):

a'igUx)) = a'(K'-\X)[K''\X)yyx,x), (2.37)
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ED,{9,X,a) = (Wg-Glf) (2.38)

= \\g- K'-\X)K'gf + a' Tr |k'-\A) (k'-^(A))'|
,

EDs{9,X,cj) =
< II

S"' - K'G^; ||2
) (2.39)

=
II

(i-K'K'-'(A))k'5
IP

+ a^TrUl-K'K'-\X)^ (l - K'K'-'(A))'| .

Here, G^ and S"^ axe the random variables belonging to ^J and s"^ respectively.

If the constraints in Eq. 2.31 must be added, Eq. 2.35 no longer holds for the result.

Also, the SC-method can not be applied in the way described so far, because the expectation

values shown above can not be calculated explicitly. Thus, a modified SC-method will be

introduced for this case. In addition, no explicit expressions for the error intervals can be

obtained and the calculation of these intervals by a Monte Carlo simulation requires too

much time. Therefore, the calculation of the error intervals will be simplified in this case.

2.5.2 Approximation by finite-dimensional quantities

In order to determine the solution of Fredholm integral equation of the first kind, we must ap-

proximate all functions and operators by finite-dimensional vectors and matrices. Although

the approximation can be done in several ways, a simple approximation method with a low

degree of convergence is sufficiently accurate. This is because the error caused by these

approximations is small compared with the error caused by the regularization and the data

error. Therefore, the quantities (K'g),
\\
Lg |p and

\\ g - g^ IP are approximated by

l,...,m, (2.40)

(2.41)

(2.42)

With
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If L is the second derivative, the coefficients Ly are given by

^v ~
/^ (^'i

~ 2<5(j+i)j + (y(i+2)j) , i = l,...,n', ; = l,...,n,

n' = n-2. ' (2.45)

If L is the second derivative with zeros at the boundaries, the coefficients Lij are given by

^y ~ T2 i^^J
~ 2^(i+i)j + ^t(j+2)) ,

i = l,...,n'
, j = l,...,n,

n' = n + 2. (2.46)

Now, we can consider the elements of the vectors g and g^ and of the matrices K' and L' as

9j = 9{Xj), j = l,...,n, (2.47)

9lj = Olixj), i = l,...,n, (2.48)

K'ij = —K{uJuXj), z = l,...,m, i = l,...,n, (2.49)

L'ij = VhLij, i = l,...,n', j = l,...,n. (2.50)

2.5.3 Calculation of the result without constraints

As mentioned in chapter one, the result for Fredholm integral equation of the first kind is

determined by the minimum of the quantity

V{\) = ||s"^-K'g||2 + A||L'glP, (2.51)

where the vector g and the matrices K' and L' are defined in Eqs. 2.47 to 2.50. The minimum

of V'(A) is given by the solution of the equation

(k"K' + A L"L') g^ = K'*s'"
,

(2.52)

which can be written as

g^ = (k'*K' + A L"L')
"'

K"s'" . (2.53)

To calculate the result, the matrix K'"^(A) = (K'*K' + A L'*L')~^ K'* must be evaluated.

The calculation of this matrix can be done in three steps. In the first two steps, the matrix

K'~^(A) is evaluated for a given value of the regularization parameter. In the third step, a

generalized singular value decomposition [23] is obtained and the matrix can be evaluated

for different values of the regularization parameter without further matrix decompositions.

The first step can be divided into two cases:

Overdetermined problem, where the rank of the matrix K' is n, i.e. n < m. The QR-

decomposition [24] of the matrix K' is used to reduced the number m of data points:

K' = QK", (2.54)
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here, Q is an m x n matrix satisfying

Q'Q = I, (2.55)

and K" is an upper triangular matrix with size n x n. With these quantities K'~^(A)

can be written as

K'-^(A) = (k"*K" + AL''L')~'k"*Q* (2.56)

Underdetermined problem, where the rank of the matrix K' is m, i.e. m < n. In this

case Eq. 2.54 holds with

Q = I, (2.57)

K" = K', (2.58)

In the case of m = n either approach is valid.

In the second step the Qi^-decomposition of the matrix

KM _ /^ Qi A R (2.59)

is introduced. In this equation the scaling factor si is given by

or by

si ^ ^0 (2.61)

if an appropriate value Aq for the regularization parameter A is known. R is an upper

triangular n x n matrix, Qi is a (min(m, n)) x n matrix and Q2 is an n' x n matrix.

Furthermore, Qi and Q2 satisfy the relation

QiQi + Q2Q2 = I (2-62)

With this decomposition the matrix K'~^(A) becomes

K'-^(A) = R-^ f (1 - 4)QlQi + 4ll QiQ* (2-63)

If the regularization parameter is known, the scaling factor si is given by Eq. 2.61 and the

result together with the error intervals can be calculated for the regularization parameter

Ao:

gj = R-lQlQ*s'^ (2.64)

oHqI:) = a2(R-'QlQi(R-')*).^, i = l,...,n. (2.65)

Otherwise, if the regularization parameter must be determined with the SC-method, a third

step should be considered. In this step the SV-decomposition [25] of Qi is introduced:

Qi = UWV* . (2.66)
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Here, U is a (min(m, n)) x (min(m, n)) matrix satisfying

U'U = I

,

(2.67)

and V is a n X (min(m, n)) matrix satisfying

V*V = I

.

(2.68)

The matrix W is a diagonal matrix containing the singular values of Qi. Replacing Qi by

UWV' in Eq. 2.63, the final expression for the matrix K'~^(A) is obtained:

K'"' (A) = R-^ V W-i (A) U' Q*

,

(2.69)

where

Wr\X) = 5ijWij/Ul-^)w^, + ^\ ij = l,...,min(m,n). (2.70)

Then, for any regularization parameter A, the solution of Fredholm integral equations of the

first kind together with the error intervals can be obtained:

g^ = K'-\X)s"' = R-'VW-\X) Vet's'" . (2.71)

^Hgli) = a2(R-iVW-^(A)(R-^VW-^(A))')^.
, i = l,...,n. (2.72)

Now, an optimum value for the regularization parameter must be determined. This can be

done by calculating EDg{g,n,a) via Eq. 2.38 and then by solving Eq. 2.28. The function g

and the operators K' and K'~^(/i) are first replaced by corresponding vector and matrices.

Then, approximations Eqs. 2.40 and 2.42 result in the following:

£Z),(gI,M,a) = <||gI-G^in

= /i||gI-K'-^(M)K'g^||2 + ha' Tr|K'-^(/x) (k'-^(/x))'| (2.73)

By using Eqs. 2.54, 2.59 and 2.66 the matrix K' can be expressed as

K' = QUWV'R (2.74)

And the final expression for EDg{gl, iJ,,a) can be obtained with help of the Eqs. 2.69, 2.71

and 2.74:

EDg{gl,^l,a) = h\\K-'V{l-W-\i,)W)W~\X)V'Q's"'

+ /la^ Tr{R-iVW-i(/i) (R-^VW-^ (//))'} . (2.75)

After the value Xsc for the regularization parameter A is calculated by solving Eq. 2.28,

the error intervals and the result itself are obtained by replacing A in Eqs. 2.71 and 2.72 by

Xsc- If the scaling factor a is not known, an estimate a must be calculated before the result
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and the error intervals are obtained. Through similar process as to calculate EDg{gl,ij,,a),

explicit expressions can be obtained for EDs{g')^,X,a) and dg'.

ED,{glX,a) = ||(l-WW-i(A))WW-^(A)U'QV"f

+ a^ Tr
I
(I - WW-^(A)) (I - WW-^(A))'} + a^{m + n), (2.76)

d, = lls'^P - ||U'Q*s'ni' +
II

(I - WW-i(A)) U'Q's"' f . (2.77)

By solving Eq. 2.27 an estimate a for the scaling factor a can be obtained.

Finally, here is a summary of various steps necessary to compute the result:

If an appropriate value Aq for the regularization parameter is known, the calcula-

tion can be performed in 5 steps:

1. initialize m, n, n', K', L', a and Aq;

2. ifm < n, set K" = K' and (Q*s"') = s'^

if m > n, determine K" and (Q's'°^) by Q-R-decomposition (Eq. 2.54);

3. set Si (Eq. 2.61) and determine Qx and R by Qi?-decomposition (Eq. 2.59);

4. calculate (R-^Q'i);

5. calculate g^ (Eq. 2.64) and a (g^J for i ^ M (Eq. 2.65);

If an appropriate value for the regularization parameter is not known, the calcu-

lation can be performed in 7 steps:

1. initialize m, n, n', K', L' and a, if known;

2. if m < n, set K" = K' and (Q's'") = s"",

if m > n, determine K" and (Q*s"^) by (^/^-decomposition (Eq. 2.54);

3. set Si (Eq. 2.60) and determine Qi and R by Qi^-decomposition (Eq. 2.59);

4. determine V, W and (U'Q's"") by SV-decomposition (Eq. 2.66);

5. calculate (R"^V);

6. determine Xsc by solving Eq. 2.23 or Eq. 2.28, if an estimate for the scaling factor

a must be calculated;

7. calculate g^ (Eq. 2.71) and a (g^J for z ^ M (Eq. 2.72).

2.5.4 Calculation of the result with constraints

If additional constraints should be considered, the same Qi?-decomposition ,
Eq. 2.54 in

the case of overdetermined problem and Eqs. 2.57 and 2.58 in the case of underdetermined

problem, is used to reduce the number m of data points. With the quantities introduced

there the result is obtained by minimizing

y(A) =
II
Q's'^ - K"g f + A

II
L' g f +

II
s"^ f -

II
Q*s"^ f (2.78)
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5i > 0, i = l,...,n. (2.79)

In order to determine an optimum value for the regularization parameter A, the SC-method

must be modified. According to the modified SC-method, the determination of the regular-

ization parameter can be done in three steps:

Step 1, a value X'sc for the regularization parameter A and , if necessary, an estimate a for

the scaling factor a is calculated in the absence of the constraints Eq. 2.79.

Step 2, an intermediate result is determined by minimizing V{X'sc) subject to the con-

straints Eq. 2.79. This minimization can be done by a QP-algorithm [26] and leads to

a set M' of active constraints:

gli = 0, leM'. (2.80)

Step 3, the final value Xsc for the regularization parameter A is determined. For this

purpose the set of active constraints M' is taken into account by removing the columns

from the matrices K" and L' which belong to an active constraint.

If a value for the regularization parameter is given, Aq, or has been calculated, Xsc, with

the modified SC-method, the final result is obtained by minimizing V{Xo) or V{Xsc) subject

to the constraints Eq. 2.79. At this stage, a set M of active constraints for the final result

is calculated. This set is used for the determination of the error intervals by removing the

columns of the matrices K" and L' which belong to an active constraint. Then the QR-
decomposition introduced in Eq. 2.59 is obtained using these modified matrices. Finally, the

error intervals can be calculated according to Eq. 2.65.

Again, various steps necessary to calculate the result are summarized:

If an appropriate value Aq for the regularization parameter is known, the calcula-

tion can be performed in 7 steps:

1. initialize m, n, n', K', L', a and Aq;

2. if m < n, set K" = K' and (Q's"") = s"",

if m > n, determine K" and (Q*s"^) by Qil-decomposition (Eq. 2.54);

3. determine g^ and the set M of active constraints by minimizing y(Ao) subject to

the constraints Eq. 2.79;

4. determine K"^ and L'm by removing the columns from K" and L' which belong to

an active constraint;

5. set Si (Eq. 2.61) and determine Qi and R by Qi?-decomposition (Eq. 2.59 with K"
and L' replaced by K''^ and L'm)',

6. calculate (R-^Q^i);

7. calculate g^ (Eq. 2.64) and a (g^^) for i ^ M (Eq. 2.65).
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If an appropriate value for the regularization parameter is not known, the calcu-

lation can be performed in 17 steps:

1. initialize m, n, n', K', L' and a, if known;

2. if m < n, set K" = K' and (Q's"") = s"",

if m > n, determine K" and (Q's'^) by Qi?-decomposition (Eq. 2.54);

3. set Si (Eq. 2.60) and determine Qi and R by QjR-decomposition (Eq. 2.59);

4. determine V, W and (U'Q's'") by SV-decomposition (Eq. 2.66);

5. calculate (R"^V);

6. determine the preliminary value X'sc for the regularization parameter A by solving

Eq. 2.23 or Eq. 2.28, if in addition an estimate for the scaling factor a must be

calculated.

7. determine the set M' of active constraints by minimizing V{X'sc) subject to the

constraints Eq. 2.79;

8. determine K"m and L'm by removing the columns from K" and L' which belong to

an active constraint;

9. set Si (Eq. 2.60) and determine Qi and R by Qi?-decomposition (Eq. 2.59 with K"
and L' replaced by K"jn and L'^);

10. determine V, W and (U^Q^s"") by SV-decomposition (Eq. 2.66);

11. calculate (R"^V);

12. determine the final value Xsc for the regularization parameter A by solving Eq. 2.23;

13. determine g^ and the set M of active constraints by minimizing V{Xsc) subject

to the constraints Eq. 2.79;

14. determine K"m and L'^ by removing the columns from K" and L' which belong

to an active constraint;

15. set si = ^/Xsc and determine Qi and R by Qi^-decomposition (Eq. 2.59 with K"
and L' replaced by K."m and L'^);

16. calculate (R-^Q^J;

17. calculate a (g^J for i ^ M (Eq. 2.65).

2.6 Two-dimensional problem

The solution of Predholm integral equation of the first kind described in the previous section

is a one-dimensional vector g with elements Qj = g{xj), where j = 0, . .
. ,

(n — 1). The kernel

K that provides the mapping between g and the data vector s is a matrix with elements

Kij = K{u}i,Xj). If the function ^ is a two-dimensional object g{x,y), e.g. distribution of

^ and ip angles that characterize peptide backbone conformations, its discrete vector g has
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the components gki'.

9ki = 9{xk,yi),

Xk = Xmm + khi , fc = 0, . .
. ,

(rij - 1) , rix = a^max -a:mm
hx

+ 1,

yi = ymin + ^hy^ / = 0,...,K-1), ny = ^"^^^ ^"^^^ + 1

,

(2.81)

where /ix and hy are the step size of discretization along x and y directions respectively.

One can number the two dimensions of grid points in a single one-dimensional sequence by

transforming the double index kl to a single index j according to

j = kuy + I
, J = 0, . .

. ,
(n - 1) , where n li'x '^y (2.82)

Accordingly, the pair of arguments {xk,yi) is lumped into a single component t]j. Then the

minimization problem Eq. 2.34 can be solved to obtain the optimum value for the regulariza-

tion parameter and to calculate the solution g. If the operator L is chosen to be the identity,

the functional to be minimized is given by

^{g) = Ws'^iu) -K{u;,rj)g{v)\\' + A
|| 5(^7)

If L is the second derivative, the functional ^(^) is given by

*(5) = |U» -K{u,ri)g{v)f + X

(2.83)

(2.84)

In both cases the operator L introduces no coupling between the two dimensions. The space

of the two dimensions is unwrapped into a one-dimensional space and consequently the func-

tion g is treated as if it were a one-dimensional object. An appropriate replacement for the

operator L can be the "Laplacian" defined according to the underlying system of coordinates.

The Laplacian has intrinsic dependence on the operators acting on both dimensions, thereby

introduces a cross-coupling between the two dimensions. This coupling should recover the

shape of the two-dimensional function g{x,y) better and result in more stable solutions. In

the next chapter, we present discrete implementation of the Laplacian in both Cartesian and

Spherical coordinates systems.
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Chapter 3

NMR backgrounds and set up of

calculations

In this chapter we present the numerical details necessary for the extraction of the Ra-

machandran angles distribution function ^(0, ip) via two-dimensional inverse theory. This

includes the calculation of the kernel, the simulation of the noisy data and the discrete im-

plementation of the Laplacian. The distribution of the Ramachandran angles, (j) and ip, can

be obtained by solving the Fredholm integral equation of the first kind:

s{u) =
j j K[u- <j>, ^) g{<t>, ij) d<j> d^ . (3.1)

As discussed in chapter 2, finite-dimensional vectors can be introduced for the functions s{uj)

and ^(<^, V")) S'lid ^ matrix K for the kernel-function K{uj;(j),tp). The data vector s consists

of m discrete data points si, . .
.

, s^- Also, the solution vector g is an n dimensional column

vector with elements gi,...,gn- Each Qj is connected to a pair of {(pk, ''Pi) through

9j = 9{kn^+i) = 9k,i = 9{(pk,'(pi) (3.2)

Therefore Eq. 3.1 is approximated by

n

Si = h^h^^ Kij Qj , 2 = 1, . .
.

, m . (3.3)

The kernel K is the set of basis spectra covering the parameter domain {(p, ip); each column

in the matrix K is a basis spectrum and there are a total of n = n^n^ such spectrum.

The kernel is known from the theory and once the data points are obtained from either the

experiment or simulation, the solution vector g can be calculated by inverting Eq. 3.3.

3.1 Kernel

The kernel K is obtained through simulations based on two different measurements. The

first 154 rows of the kernel K contains simulated data points based on "constant-time double-

quantum-filtered dipolar recoupling" (CTDQFD) measurements. The other 36 rows of the

kernel K contains simulated data points based on "2D MAS exchange" measurements. On

each row, each number corresponds to a given {(p,ip) where (p ranges from —180° to 0°,

inclusive, in increments of 5 degrees and ip ranges from -180° to 180°, inclusive, in increments

of 5 degrees. Thus, there are a total of 2701 pairs of {(p, ip) and for each {(p, ip) there is a total

of 190 simulated data points. For 5° resolution, therefore, the size of the inversion problem
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is 190 X 2701 which is a vastly underdetermined problem. To speed up the calculations

and to examine the stability of the result for lower grid densities, the decimated versions of

the kernel K are also used, using every second, or third, or even fourth columns in K, to

simulate 10°, 15° and 20° resolutions in {(p, ijj) space.

3.1.1 Two-dimensional (2D) nuclear magnetic resonance (NMR)
exchange spectroscopy with magic angle spinning (MAS)

In general, 2D NMR exchange spectroscopy [27] permits the measurement of correlations

between NMR frequencies measured in two time periods, ti and t2, separated by an exchange

period r. In the simple case of a static, unoriented, molecular solid with spin-| labels at

two sites A and B that are separated by several angstroms, the one-dimensional (ID) NMR
spectrum is typically a superposition of the powder pattern line shapes of the two sites. The
powder pattern line shapes result from the orientation dependence of the individual NMR
frequencies, which is principally due to the chemical shielding anisotropy (CSA) [28]. In the

case of an axially symmetric interaction or in the presence of rapid molecular motion which

is symmetric with respect to one axis, the orientation dependence of an NMR frequency is

given by

uj = uj{e) = 3.
(3 cos' ^-1) ^ xP2{cose), (3.4)

where x corresponds to 9 = 0, x = u{0), and 6 is the angle between the externally applied

magnetic field and the molecular eixis of symmetry. An oriented spectrum for ^ = is a

direct representation of the anisotropy distribution, g{x), while the powder spectrum S{uj)

is the superposition of contributions from all possible angles 9:

s{u) = r
Jo k^r. p{9)d9

, (3.5)

where p{9) = sm9 is the solid angle weighting factor. Fig. 3.1 illustrates the relationship

between a Gaussian spectrum and corresponding powder pattern. In a 2D exchange mea-

surement nuclear magnetization can be exchanged between sites A and B during r, due to the

weak dipole-dipole couplings between the labeled nuclei [29, 30, 31]. If r is comparable to or

greater than the time scale for magnetization exchange, the 2D spectrum shows off-diagonal

intensity that is a direct measurement of the correlations between the orientation-dependent

NMR frequencies of sites A and B. These frequency correlations are determined by the rela-

tive orientation of the CSA tensors of A and B within a labeled molecule. If, as is often the

case, the orientation of the CSA principal axes relative to the local bonding geometries at

sites A and B are known, then the relative orientation of the chemical groups that contain

A and B can be determined from or strongly constrained by the 2D spectrum.

2D exchange spectra have been used to investigate the structures of molecular solids, syn-

thetic polymers and peptides in the manner described above [32, 33, 34]. Fig. 3.2 illustrates

a basic rf pulse sequence for 2D NMR exchange spectroscopy. Two significant problems with

static 2D exchange spectroscopy, which are particularly severe in biochemical applications

and other applications where sample quantities are limited and spectra are complex, are

the low sensitivity and the poor resolution associated with the broad, powder pattern line





Chapter 3. NMR backgrounds and set up of calculations 27

g(x)

X

Figure 3.1: A schematic representation of a powder pattern.

90„ 90
^

Figure 3.2: A simple rf pulse sequence for 2D NMR exchange spectroscopy. The notation 9^

represents a pulse that rotates nuclear spin angular momenta by 6° about axis

4> in the rotating frame. Reproduced from [35]
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shapes. These problems can be alleviated to a large extend by magic angle spinning (MAS).
Magic angle is the angle for which the spectral line becomes infinitely narrow and is obtained

by setting "u{6)" to zero. In other words

{3cos2^-l) „ «V _ L = 0, ^ e^^^i^ = 54.6°

.

(3.6)

At moderate speeds, MAS narrows CSA powder patterns to comparatively sharp lines, called

spinning sideband lines, at the isotropic chemical shift frequencies plus integral multiples of

the spinning frequency. As shown by Veeman et al. [36] and Spiess et al. [37, 38], 2D ex-

change measurements can be carried out with MAS in such a way that off-diagonal NMR
signals appear only if exchange processes are present, by proper synchronization of the

radio-frequency (rf) pulse sequence with the sample rotation. Compared with nonspinning

2D exchange measurements, rotor-synchronized 2D MAS NMR exchange measurements have

dramatically improved sensitivity and resolution because the off-diagonal signals are concen-

trated into sharp peaks that connect the spinning sideband frequencies in ti and ^2-

Detailed descriptions of the theory behind rotor-synchronized 2D MAS NMR exchange

spectroscopy are presented by Robert Tycko et al. [35]. A new class of technique, called

orientationally weighted 2D MAS exchange measurements, is introduced and shown to aug-

ment the structural information contained in 2D MAS exchange data. The special case of

investigations of peptide backbone conformations, characterized by torsion angles (p and ip,

using 2D ^^C MAS NMR exchange spectroscopy is treated in depth, in both theory and

experiment.

Rotor-synchronized pulse sequences that produce purely absorptive (real) orientationally

weighted 2D MAS NMR exchange spectra are shown in Fig. 3.3. Note that the synchro-

nization of the pulse sequence with the sample rotation is given by r^ = n r«; where n

is an integer, tr = ^ and a;^ is the sample rotation frequency. Also, Fig. 3.4 shows rf

pulse sequence for obtaining experimental 2D MAS exchange spectra. The 2D frequency-

domain spectrum consists of a set of delta-function signals at frequencies uil^g + Mujr in the

first frequency domain (wi) and ul^g + Nur in the second frequency domain {002); where

ulgg = —uq a\g^ is the isotropic chemical shift for site i in rad/s, wq is the nuclear Larmor

frequency and 0]^^ is the isotropic chemical shielding for site i. These signals are called

"spinning sideband crosspeaks." The total spinning sideband crosspeak amplitudes due to

exchange from site i to site j in molecules are

A%M = ^ J
da
J

dp sinp Hi,{a,P) Fi{a,P) Gl_^{aJ) , (3.7)

where

1 r''
FUc^J) = ^y dCe-^^'^MO, (3.8)

G'^(c.,/3) = ^1 dCe-^^^MOf;{0, (3.9)

Hl,{a,P) = ^J dje''"^Wia,p,j)f:{a,P,j). (3.10)
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Figure 3.3: General form for rotor-synchronized pulse sequences that produce purely absorp-

tive orientationally weighted 2D MAS NMR exchange spectra. Arrows indicate

time points that are synchronized with the beginning of sample rotation periods.

Unweighted spectra are obtained by omitting pulses up to and including 90^.

Reproduced from [35]
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'H

90.

-ih

180v90r

/^

90y 90^ 90v

1^ rn±i_i!i:iJU-iM\^
t t I !

Figure 3.4: RF pulse sequence to obtain experimental 2D MAS exchange spectra. Orienta-

tionally weighted spectra are obtained with the sequence as shown, with C = ±y
or ±x and alternate addition and subtraction of signals. Unweighted spectra

are obtained by setting A to a value close to zero (0.5 /xs) and setting ( = ±y.

Reproduced from [35]

The function W{a, /9, 7) weights the spinning sideband crosspeak signals at the orientation

{a, ^, 7) and comes into effect if the initial nuclear spin magnetization distribution is a

function of the molecular orientation. The functions fi{Q = fi{a,PX) that appropriately

express the NMR signals in a rotor-synchronized 2D exchange experiment, as shown in

Refs. [37] and [38], have the following form

/i(C) = exp[z(aj sin 2C - 6, cos 2C + Q sin ( - di cos Q]

,

(3.11)

where

,) sin^ p ^ (4y - ^xx) cos 2a - - a^y sin 2a

1
X (cos 2/9 + 3) - - {a^^ cos a + a^^ sin a) sin 2,9

biiaj) = -
2ojR {

1 2 •

3 (^yy - <^xx) sin 2a + - oly cos 2a cos/3

(3.12)

+ - (4^ sin a - ai^ cos a) sin^
j- ,

(3.13)

Ci{a,p) = -
5^ -^(^L-L)sin2^- v^

3V2
(^yy - (^xx) cos 2q; - ^ a^y sin 2a

9 /9
X sin 2/5 -\ —- {al.^ cos a + cr* ^ sin a) sin 2/3 ^ ,

(3.14)

di{a,P) = -
v/2 2\/2 •

-3- Ky -
(^xx) sin 2a + -^ (^ly cos 2a sin^
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3- Kz sin a - ai^ cos a) cos^
^

. (3.15)

In these expressions, cr*,^ are the elements of the CSA tensor for nuclear spin site i represented

in a molecule-fixed Cartesian axis system with axes {x, y,z}. al^g is equal to the average of

the CSA principal values a\i, O22 and a\^. The molecule-fixed axis system is mapped to a

rotor-fixed axis system {x', y', z'} by Euler angles a, /? and 7 such that a and /3 are spherical

coordinates of the z' direction in the molecule-fixed axis system. The axis of sample rotation

is taken to be z'. The external magnetic field B of the NMR spectrometer is taken to lie

in the x'z' plane at time < = 0, at the magic angle 9^ = cos"^(l/\/3) to z' and at angle

7r/2 - 9m to x'.

The total spinning sideband crosspeak amplitudes are functions of the anisotropy and

asymmetry of the CSA tensors of sites i and j, the ratio ojq/ujr, and the relative orientation

of the principal axis systems of the two CSA tensors, as described by a set of Euler angles. It

is the dependence on the relative orientation of CSA principal axis systems of the exchanging

sites that makes rotor-synchronized 2D exchange spectroscopy a useful probe of molecular

conformations. In order to relate the spinning sideband crosspeak amplitudes to molecular

structure, consider two sites, i = 1 and j = 2. If the molecular axis system {x, y, z} is taken

to be the principal axis system for the CSA tensor of site 1, {xi,yi,zi}, then for this site

^ii' ^yy ^^^ ^'2 ^^ ^1^- ^--^^ through 3.15 are equal to the CSA principal values ajj, 0-22 ^^^

al^ and aj. = al.^ = a*^ = 0. For site 2, the CSA elements in Eqs. 3.12 through 3.15 become

a^^ = (Til cos9xfi cos9xi, + cr22 cos9yfj, cos 9yi, + al^ cos^^^ cos^^^
, (3.16)

in terms of the CSA principal values al^, a22 and a^^ for site j and the direction cosines

of the CSA principal axis of site 2, {x2,y2,Z2}, in the principal axis system of site 1, e.g.

cos9xz = X2.Z1. In terms of the Euler angles ai2, /3i2 and 712 that relate the two CSA
principal axis systems,

cos 9xx = cos 7i2 cos /3i2 cos ai2 — sin 712 sin ai2 ,

cos 6xy = cos 7i2 cos ^12 sin 0:12 + sin 712 cos 0:12 ,

(3.20)

(3.21)

(3.22)

(3.17)

(3.18)

cos ^12 = - cos 7i2 sin /5i2 ,
(3.19)

cos 9yx = — sin 7i2 cos ^12 cos 0:12 — cos 712 sin 0:12 ,

cos 9yy = — sin 7i2 cos ^\i sin aii + cos 712 cos Oi\2
,

cos 9y2 = sin 7i2 sin ^12 ,

cosOzx — sin /3i2 cos ai2

,

(3.23)

cosdzy = sin y9i2 sin q;i2 ,
(3.24)

cos9zz = cos/5i2. (3.25)

The Euler angles are defined so that i?ii(Q;i2)-Rj,i(A2)-R2i(7i2){xi,yi,Zi} = {x2,y2,Z2},

where for example Ry^{pi2) is the right-handed rotation about yi by /3i2.

Fig. 3.5 illustrates a portion of the molecular structure. To a good approximation, the

peptide backbone is comprised of a series of planar peptide bond units with relative orienta-

tions specified by the dihedral angles </) and xp. Experiments carried out on model compounds
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Figure 3.5: Peptide backbone, illustrating the dihedral angles and V that define the back-

bone conformation at amino acid residue 2. Peptide planes are indicated by

dashed lines. The all-trans conformation is shown, for which cf) — ip = 180°. In

the experiments on L-alanylglycylglycine (AGG), ^^C labels are introduced at

carbonyl carbons 1 and 2. Reproduced from [35]

with ^^C labels at two successive carbonyl sites in the peptide backbone have shown that the

caxbonyl ^^C CSA principal axis system in a peptide is oriented with z (corresponding to

C33) perpendicular to the peptide plane and y (corresponding to aaa) nearly parallel to the

C-0 bond, making an angle x ~ 130° with the C-N bond. Assuming this geometry and

defining 61 to be the angle between the C^^^-N^^) bond and the N^^^-da^ bond {5i « 58°),

82 to be the angle between the N(2)-CL^^ bond and the Ci^^C^^) bond (^2 ^ 69°) and ^3 to be

the angle between the CL^^C^^^ bond and the C^^^N^^^ bond (^3 ?« 64°), the relation between

the Euler angles a^, A2 and 712 and the dihedral angles and tp can be expressed as

ai2 = Oi + Xi-Si, (3.26)

cos/3i2 = sin (^ sin '0 cos (52 — cos (/) cos i/)

,

(3.27)

7i2 = 7 - X2 + ^3 ,
(3.28)

where Xi and X2 are the values of x for sites 1 and 2, and a and 7 satisfy

sina sin/3i2 = sin t/" sin ^2 ,
(3.29)

cos a sin ^12 = — cos (j) sin tp cos 62 — sin
(f)
cos tp

, (3.30)

sin7 sin;9i2 = — sin (/> sin ^2 ,
(3.31)

cos 7 sin ^12 = — sin cos ip cos 82 — cos (j)sintp . (3.32)

Eqs. 3.16 through 3.32 permit numerical calculations of the 2D spinning sideband crosspeak

amplitudes for any values of the dihedral angles (p and tp that specify the peptide backbone

conformation.

3.1.2 Constant-time double-quantum-filtered dipolar recoupling

Solid state NMR spectra in different experiments are determined by various nuclear spin

interactions, such as Zeeman interaction H/, the chemical shift Hcs, homonuclear and het-
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eronuclear magnetic dipole-dipole interactions H// and H/5, and interactions with applied

radio-frequency (rf) fields H^f- NMR experiments are analyzed in the rotating frame, where

the Hamiltonians corresponding to these interactions have the following forms

Kz = Awl,, (3.33)

Hcs = ujQ (Siso + Susin^Ocos^ ^ + 622sin'^6sm'^ (p + S^sCos^O)
, (3.34)

H„ = Z|5(i£2!^(3,.,,,,-I,l,), (3.35)
'"12 ^

ns 2

Erf = a;i(t)[I^cosx(t)+Ij,sinx(i)]. (3.37)

In these equations: I and S are spin angular momentum vector operators for two different

spin species. Ao; is the resonance offset (the difference between the nuclear Larmor frequency

u)q emd the rf carrier frequency cv). Siso is the isotropic chemical shift and ^n, ^22 and ^33 are

the principal values of the chemical shift anisotropy (CSA) tensor. 9 and (j) angles specify the

direction of the magnetic field in the CSA principal axis system. 7/ is the I spin magnetogyric

ratio, ri2 is the distance between the two coupled I spins, and 9' is the angle between the

internuclear displacement vector and the externally applied magnetic field (directed along

the laboratory z axis). Similar definitions hold for 75, r/5 and 9". uji{t) and x{t) ^^^ the

time- dependent rf field amplitude and phase, with respect to a constant-phase carrier signal

at frequency u. In system of many spins, Hcs, H// and H/5 would contain many terms with

different values of the various parameters for each type of spin or spin pair. In heteronuclear

spin system, H^ and Hrf would contain one term for each spin species.

Obviously, anisotropic chemical shifts and nuclear magnetic dipole-dipole couplings con-

tain structural information through the dependence on internuclear distances and orien-

tations. The orientation dependences of H^s, H// and H/5 result in a strong orientation

dependence of the NMR frequencies. Therefore, NMR spectra of polycrystalline and non-

crystaline solids, in which the molecules in the sample take on all possible orientations (with

respect to the external magnetic field) randomly, exhibit inhomogeneously broadened lines,

called powder patterns. Fig. 3.6 a shows a simple example of a powder pattern lineshape

for the case of a ^^C-labeled compound in polycrystalline form. Although powder pattern

lineshapes can contain structural information, broad lineshapes result in lower resolution

and sensitivity. To achieve high resolution and sensitivity, solid state NMR experiments on

unoriented samples are carried out with magic-angle spinning (MAS). The line narrowing

effect of MAS on solid state NMR spectra is shown in Fig. 3.6 b-d. At the magic angle the

orientation-dependent parts of Hc5, H// and H/5 average to zero over one rotation period

tr. When the MAS rotation frequency ur greatly exceeds the inhomogeneous linewidth, the

powder pattern collapses into a single, much sharper line at the isotropic chemical shift fre-

quency. Since the total area of the lineshape is unchanged, the signal-to-noise ratio increases

as the MAS rotation frequency, ur, increases.

There are two important problems with the MAS technique. First, since the orientation-

dependent parts of the dipole-dipole couplings are averaged out, the structural information
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contained in these couplings is lost. Second, the line narrowing is quite often insufficient to

produce a spectrum in which resonances from inequivalent nuclei are resolved, e.g. in ^^C

MAS spectra of large molecules such as peptides. In such situations, the spectrum should

be simplified by selecting certain resonances of interest and suppressing the others.

Regarding the first problem, a wide variety of techniques have been devised to maintain

both the high resolution of MAS and the information contained in homonuclear and het-

eronuclear dipole-dipole couplings. A large number of references can be found in [40] (page

9444) and [39] (page 582) regarding both homonuclear and heteronuclear dipolar recoupling

techniques. The simplest technique is to spin slowly. As shown in Fig. 3.4, the spinning

sidebands become more numerous and intense as ur decreases. Most of the structural infor-

mation contained in powder pattern lineshapes is also contained in spinning sidebands under

slow MAS (i.e. 2ni/R < ujo\5u — S^^l). Another technique is to combine MAS with simple

resonant radio-frequency (rf) pulse sequences in synchrony with the sample rotation [41]. In-

terference between the time dependence induced by MAS and the time dependence induced

by pulse sequences can prevent anisotropic spin interactions from being averaged to zero,

even under fast MAS. This phenomenon has come to be called "recoupling".

"Dipolar recovery at the magic angle" (DRAMA) [40] is a well-known recoupling tech-

nique in the case of homonuclear dipole-dipole coupling, e.g. ^^C— ^^C or ^^N— ^^N couplings.

The basic element of this technique is the pulse sequence illustrated in Fig. 3.7 a. MAS alone

makes the (3cos^^— 1) term in Eq. 3.35 time dependent, with terms that oscillate at vr

and 2i'ii and therefore average to zero. The rf pulses in DRAMA technique introduce an

additional time dependence of the spin operator term (31^1 lz2 — Ii-l2) by rotating this term

about X by 90° in the period between the two pulses. The Hamiltonian H// then reduces to

H//(t) = -^{Ci cosuRt + Si sinuRt + C2 cos 2ujRt + S2 sin 2ujRt) T{t)
, (3.38)

where

f
31,1 1,2 - Ii.l2 ,

0<t<r'
T{t) =

<^ 3 Ij,i Iy2 - I1.I2 , t' <t<T' + r (3.39)

[ 3I,iI,2-Il.l2, T' + T<t<TR

The coefficients Ci, Si, C2 and 52 are functions of the internuclear direction in__an axis

system fixed in the MAS rotor. Because of the time dependence of the operator T{t), the

time average of H//(i), which determines the effect of H//(t) to lowest order becomes

(H//(i)) =
-7|n

„3
^^12

sin u)r(t' + t) — sinojRT'
61

+ C2

2tt

sin 2ujr{t' + t) — sin 2iORT'
(3VI,2-3I.iW, (3.40)

which is generally nonzero. Because Ci and C2 are orientation dependent, spectra acquired

with DRAMA (or other recoupling techniques) exhibit powder pattern lineshapes that are

dependent on the details of the pulse sequence, as shown in Fig. 3.7 b.

"Radio-frequency-driven recoupling" (RFDR) [42, 43, 44] is another class of recoupling

techniques in the case of dipole-dipole homonuclear spin systems with large chemical shift or
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(a) 90, 90..

r

200 -200 200 -200

"•C NMR frequency (Hz)

Figure 3.7: (a) Radio-frequency pulse sequence for dipolar recovery at the magic angle

(DRAMA), consisting of two 7r/2 pulses with phases x and —x per MAS ro-

tation period R. (b) ^^C NMR spectra of a doubly ^^C-labeled model compound

(bisulfite adduct of acetone) under the DRAMA sequence. The powder pattern

lineshapes illustrate the recoupling effect, i.e. the recovery of ^^C-^^C dipole-

dipole couplings that would be averaged to zero by MAS in the absence of the

rotation-synchronized pulses. Spectra obtained at 25.3 MHz for ^^C NMR fre-

quency, with R = 3.33 kHz. Reproduced from [39].
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CSA differences. In this class of techniques recoupling occurs owing to interference between

time dependences induced by MAS and chemical shift differences, rather than by rf pulse

sequences. RFDR has the advantages of being insensitive to inhomogeneous broadening of

the NMR lines and extremely sparse, so that effects of pulse imperfections and signal losses

due to insufficient proton decoupling are minimized. The average dipole-dipole coupling

Hamiltonian under RFDR has the form (H//(<)\ = d(In.l2- + Ii_l2+), where Ii+ is the

angular momentum raising operator for spin i and d is the effective coupling constant [42,

43, 44].

Both DRAMA and RFDR sequences can be incorporated into a double-quantum fil-

tering [40, 45, 46, 47] technique that address the second problem with the MAS technique.

Double-quantum (DQ) filtering makes it possible to pick out only those resonances that arise

from dipole-coupled pairs of spins in an MAS spectrum and to suppress resonances from iso-

lated, uncoupled spins. In a DQ-filtered measurement, DQ-coherences {i.e. superpositions

of the
I
-h + > and | > spin states of a two-spin system) are prepared during the prepa-

ration period and are allowed to evolve during the evolution period. The basic sequence for

double-quantum filtering has the form CP9o+c-(RFDR)l-90<^-90o-(RFDR)m-FID, where

CP represents cross-polarization from protons to ^^C nuclei, 90^ represents a 7r/2 pulse with

rf phase C, (RFDR)i represents an RFDR train lasting L MAS rotor periods tr, and FID

represents the detection of free-induction-decay signals. FIDs are recorded with ( =0°, 90°,

180° and 270° and coadded after multiplication by e^'^. In order to reduce the effect of resid-

ual carbon-proton couplings and transverse relaxation processes on the dipolar evolution

curves, constant-time (CT) version of DQ-filtering (CTDQFD) is introduced by extending

the sequence to CP9o+<:-(R-FDR)l-90^-90o-(RFDR)m-90i8o-909o-(RFDR);v-FID. For

a pair of spin-1/2 nuclei with coupling H//(f), the second pair of 7r/2 pulses can be shown to

refocus dipolar evolution. In a real system, the extended sequence allows the total recoupling

period T = {L +M + N)T[i to be kept constant throughout an experiment while the effective

dipolar evolution periods are varied by varying L, M and A'^.

No analytical expressions exist for calculating the amplitudes of double-quantum filtered

NMR signals. Instead, the amplitudes can be calculated by carrying out quantum dynamical

simulations based on density operators [40, 48].

3.2 Simulated data

The distribution function g{(j),ip), to be calculated through inversion, comprised of two

Gaussian-shaped blobs in the {(j),ip) plane. One blob is centered at {(l>,tp) = -60°, -40°,

the other at {(j),ip) = -130°, -1-130°. The first has a width of 30, the second has a width of

40. The first has a peak amplitude of 0.1, the second has a peak amplitude of 0.05. After this

weighting function is built up, the data vector s is generated by doing forward calculations:

s = h^h^Kg. (3.41)

Then, several noise levels, 0.1%, 0.5%, 1% and 5%, are added to the data.
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3.3 Discrete implementation of the Laplacian

3.3.1 Cartesian Coordinates System

Considering the Laplacian in Cartesian system of coordinates, the additional constraint in

solving the LS problem contains the term Lg{x, y) which can be written as

V2^(x,y) = g^9{x,y) + Q:^9{x,y) (3.42)

Consider the function ^(77) whose discrete counterpart, vector g, has the elements Qi = g{T]i),

where i = 0, (n — 1). The second derivative of g has elements

g/' = ^ (pi_i - 2gi + gi+i) , (3.43)

where h is the step-size of discretization. The special cases, gi^i for ? = and gi+i for

i = (n — 1), must be treated by appropriate boundary conditions. Also, the second derivative

operator is a matrix with elements

i = 0,...,(n-l)-2, j = 0,...,(n-l). (3.44)

For a two-dimensional function g{x,y) the vector g is defined according to Eq. 3.2. The

partial derivative in x-direction, ^, will move the fc-index oi gki and the partial derivative

in j/-direction, ^, will move the /-index oi gki according to the rule given in Eq. 3.43. These

will result in

{V^g{x,y))i^^ = -^ {gk-\,i - '2gk,i + 9k+i,i) +
j^ {9k,i-i - '^ 9k,i + 9k,i+i)

X y

A; = 0,...,(nx-l), / = 0,...,(nj,-l). (3.45)

In this equation the boundary points must be considered to define appropriate values for

^jt-i,i at A; = 0, for gk+i,i at fc = (n^ - 1), for gi.,1-1 at / = and for gk,i+i at A; = (% - 1). If

the grid spacing is the same in both dimensions, the elements of V'^g{x, y) can be expressed

as

(V^S(-. y))» = ^ (
'"-"' "" ""''

4
""''' "" "'•'"'

- S» ) , (3.46)

The quantity within the brackets is the difference between the value of g{x,y) at a certain

point and its average at the nearest neighbors. This is called the finite-difference method.

In order to make a vector out of (V^^);;.;, we number the two dimensions of grid points

in a single one-dimensional sequence according to Eq. 2.82. Hence, the components of the

underlying vector are given by

(^^^)i = /^ idi-ny - 2gi + gi+ny) + -^ {9i-i - 2 9i + 9i+i)

i = 0, . .
. ,

(n - 1) , n = Tii rij,

.

(3.47)
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which can be written as

i = 0,...,(n-l),

j = 0,...,(n-l), (3.48)

and results in an expression for the matrix structure of the Laplacian in Cartesian coordinates

system:

i = 0,...,(n-l),

3 = 0,...,(n-l), (3.49)

The boundary conditions originally defined for Qki must now be considered for gi:

Qk-u for A; = <;==^ pi_„„ for i = 0, . .
. ,

{uy - I)

,

gk+u iov k = {rij, - I) ^=^ gi+n^ for i = (n - n^^), . .
. ,

(n - 1) ,

gk,i-i for / = 4=i> gi-i for i = 0, %, . .
. ,

(rix - 1)% ,

gk,i+i for / = (n„ - 1) <i=> gi+i for i = (% - 1), (2nj/ - 1), . .
. ,

{n^Uy - 1)(.3.50)

For instance, in the case of periodic boundary conditions different cases to be considered are

as follows

1. < z < (nj, - 1) ,

which arises from k = 0. gk-\,i should be replaced by gk-i+n:,,i and consequently gi-ny

by gi-ny+n- Hence, in Eq. 3.49, 6i.ny^ should be replaced by (5i_„^+„j.

2. (n — Uy) < i < (n — 1) ,

which arises from k — {nx-l). gk+i,i should be replaced by gk+i-nx,i and consequently

9i+ny by gi+ny-n- Hence, in Eq. 3.49, (5i+„^j should be replaced by 5i+„^_„j.

3. i is a multiple of Uy
,

which arises from / = 0. gk,i-i should be replaced by gk,i-i+ny and consequently gi-i

by pi_i+„j,. Hence, in Eq. 3.49, 5t_ij should be replaced by 5i^i+ny,j-

4. (i + 1) is a multiple of Uy
,

which arises from I = {uy- 1). gk,i+i should be replaced by gk,i+i-ny and consequently

5t+i by gi+i-ny Hence, in Eq. 3.49, 5i+ij should be replaced by. Si+i^uyj

3.3.2 Spherical Coordinates System

In spherical coordinates system, the function ^ is a distribution of the polar angles </> and ip

and the Laplacian has singularities at sinip = 0. Therefore in solving the LS-problem the

poles must be excluded from the range of ip:

^' =^^ + Ir^ + ^°t^lr' sinV^O. (3.51)
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The two-dimensional grid points and the components of the vector g are defined as

9ki = 9{<f>k, i>i)

,

<f>k
= (1)0 + kh^, fc = 0, . .

. ,
(n^ - 1) , n^ = "'^

,
h 1

,

fi((,

tpi = ipo + Ih^
,

I = l,...,{n^-2) , n^ = "'^
,

h 1

,

(3.52)

where (^q = V'o = -180°, (^„^_i = +180° and (?!>„^_i = 0°. Note that in Eq. 3.52 the

possibilities / = and I = n^ — I are excluded from the range of /. Because, for those

values of / the quantity sin (00 + I h^) is zero and the Laplacian is not defined. The partial

derivatives with respect to ip, i.e. -^ and ^, move the / index in g^^i. While, The partial

derivative ^ will move the k index in gk,i. The rule for the second derivative is the same

as in Eq. 3.43, for example

For the first derivative ^g{<f>,xl)) the components are given by

5(0>V')) = TTT i9k,i+i - 9k,i-i) (3.54)

/ kA ^ H
Therefore the components of the quantity V'^g{(f),'ijj) in spherical coordinates are given by

(^^^)fc/ = ,9 2 / /

—mr\ (9k-i,i - 2^fc,( + 9k+i,i) + Tj {9k,i-i - '^Qk^i + 9k,i+i)

+ cot(^o + I K) r-7— ( Pfc,i+i - gk,i-i ) ,
(3.55)

which can be written as

(^'^'^.' = hi sin^ (V^o + I K)
^''-'' " '"^''^

,
1 cot(V'o + lh^) \ / 1 cot(i/'o + lh^)

,

Now, in order to make a vector out of (V^g) the double index {k, I) can be transformed into

a single index {i) through i = k {n^ - 2) + I, where z = 1, . .
. ,

(n - 2n^) and n = n^n^.

Then, the index '/' is equal to 'z mod (n^ - 2)' and the components of the underlying vector

are

(^'^^^ =
hi sin^ (00 + (i mod (n, - 2)) /.,) ^

^^^-^^^^ + ^^^^"^-^^ ^





Chapter 3. NMR backgrounds and set up of calculations 41

1 cot(T/'o + {i mod (n^ - 2)) h^)

hi 2h^

1 cot(V'o + {i mod (n^ - 2)) h,p)

hi 2h^

y hi hi sin^ {ipo + {i mod (n^ - 2)) h^)
J

Prom this, the matrix representation of the Laplacian in spherical coordinates system is

obtained:

•'J' h^ sin^ (V'o + (i mod (n^ - 2)) h^)

1 cot(V'o + (^ mod (n^ - 2)) /i^)

27^i

cot(i/>Q + (z mod (n^ - 2)) /t^)

2 ^^

1

hi hi sin^ (V'o + (» mod (n^ - 2)) h^)

= l,.:.,{n-2Ti^), j = l,...,{n-2n^). (3.58)

As in the case of the Cartesian coordinates system, appropriate boundary conditions must

be considered to treat the boundary points properly, they are

9(i-n^+2) for z = 1, . .
. ,

(n^ - 2) ,

9(i+n^-2) for i = {n-2n<j,-n^ + 3), ..., {n-2n^)
,

gi_i for i = 1, (n^, - 2) + 1, 2{n^ - 2) + 1, . .
. ,

(n^ - l)(n^ - 2) + 1
,

pi+i for i = (n^ - 2), 2(n^ - 2), . .
.

, n^{n^ - 2) . (3.59)

In the case of periodic boundary conditions different cases to be considered are as follows

1. 1 < i < (n^ - 2) ,

which arises from k = 0. The term gk-i,i should be replaced by g(^k-i+n^),i and conse-

quently 5(i-n^+2) by 5(i_„^+2+n-2n^)- Hencc, in Eq. 3.58, 5(i_„^+2),j should be replaced

by (J(i_„^+2+n-2n^)J-

2. (n - 2n^ -n^ + 3) < i < (n - 2n^)
,

which arises from k = {n^-l). The term gk+i,i should be replaced by i?(fc+i_„^),i and

consequently 5(i+„^-2) by c?(i+„^_2-„+2n^)- Hence, in Eq. 3.58, (5(i+„^_2)j should be

replaced by 5(i4.„^_2-n+2n^),i-

3. (i - 1) is a multiple of (n^ — 2) ,

which arises from I = 1. The term gk,i-i should be replaced by and consequently gi-i

by 0. Hence, in Eq. 3.58, (5i_ij should be replaced by 0.

4. z is a multiple of (n^ — 2) ,

which arises from I = (n^-2). The term g^.i+i should be replaced by and consequently

5i+i by 0. Hence, in Eq. 3.58, 5i+ij should be replaced by 0.
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Chapter 4

Results and discussion

As we should recall, our purpose is to extract the Ramachandran angles distribution function

g{<l),tp) via inverse theory. As described in chapter 3, our kernel K is an m x n matrix

whose elements, Kij's, are calculated based on "CTDQFDR" and "2D MAS exchange"

experiments. This kernel maps an assumed function of (p and ip angles onto a set of data

points. Noise is added to these data points and finally a simulated data vector, s*^, is

obtained. Then, in order to recover the shape of the distribution function via inverse theory,

three different approaches are examined and compared together. The quantities necessary

for this purpose are the data vector s"^, the matrix K' and the operator L' introduced in

chapter 2:

^ " • - (4.1)

n, (4.2)

Si" = — sf, z = l,...,m.
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4.2 Tikhonov regularization using the unity operator

(T^l)

As mentioned in NNLS approach, the solution of Predholm integral equations of the first

kind, g", is obtained by minimizing the misfit function. This ensures us that the highest

compatibility to the data is maintained, although the result may not have enough stability.

Lack of stability can be overcome by imposing an additional constraint on the solution.

Tikhonov regularization approach restrict the norm of the quantity L g to be minimum,

where L is an operator for which the unity or the second derivative are frequently used.

For our two-dimensional case, we examine the regularization effects of the unity and the

Laplacian operators. If L is the unity operator, one asks for the minimum Euclidean norm

of the vector g in the minimization problem:

II
s"^ -K'g||=^ + A||g||2 =^ min. (4.5)

Optimum values for the regularization parameter A are estimated using the self-consistent

(SC) method. A typical value of A is, for example, 4.2951e-01 for 5° resolution using 0.1%

noise. As the grid resolution decreases smaller values of A are obtained at a particular noise

level. On the other hand, at a particular grid resolution larger values for the regularization

parameter are obtained for higher noise levels.

For Acf) = Alp = 5°, the results and the corresponding misfit functions are presented

in Figs. 4.4, 4.5 and 4.6 using 0.1%, 0.5% and 1% noise levels respectively. By comparing

Figs. 4.4 (top) and 4.1 (top) one can see that the structure of the true function g{(f),'ip)

is recovered much better by applying Tikhonov regularization technique to the standard

least-squares problem. Unlike the misfit function obtained by the standard NNLS-method,

Fig. 4.1 (bottom), the misfit function obtained by Tikhonov regularization technique, Fig. 4.4

(bottom), is random and no systematic features appear. The standard deviation of the

misfit for the Trl-method, a = 0.4682e — 02, is much smaller than the one for NNLS-

method, a = 5.963. This means that for high signal-to-noise the compatibility between the

recalculated data and the simulated data is much better in Tikhonov regularization method.

On the other hand. Figs. 4.5 (top) and 4.6 (top) show that for lower signal-to-noise some

of the features of the true distribution function g{(l>, ip) can not be recovered. At the noise

levels above about 0.5% systematic features show up and the stability of the result, gj, is

not satisfactory.

Figs. 4.7 and 4.8 show the results for Acf) = Aip = 10° using different noise levels.

Figs. 4.9 and 4.10 contain the results for 15°-resolution, while Figs. 4.11 and 4.12 use 20°

resolution. By going to lower grid resolutions the problem is less underdetermined and as

one can expect the quality of the fit should be better. For example, for A^ = Aip = 20° the

standard deviation of the misfit, a — 0.3025e - 03, is noticeably smaller than the standard

deviation of the misfit, a = 0.4682e - 02 for Acf) = A^j = 5°. Also, Fig. 4.11 (top) shows

that for a less underdetermined problem the shape of the true function g is retrieved better.

Notice that all of these aspects appear at a high signal-to-noise ratio. Regardless of how less

underdetermined the problem is, for a low signal-to-noise ratio systematic features appear

and as can be seen in Figs. 4.8, 4.10 and 4.12 (bottom) the results do not contain enough

stability to recover the exact shape of the true distribution function.
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Figure 4.4: Ramachandran plot from simulated CTDQFD k 2D MAS exchange measure-

ments, for A0 = AV' = 5°, Tikhonov regularization using the identity. Top:

0.1% noise level (fit-5-O.l.trl); bottom: misfit for the above (misfit-5-O.l.trl).
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Figure 4.5: Ramachandran plot from simulated CTDQFD &; 2D MAS exchange measure-

ments, for A<l> = A^ = 5°, Tikhonov regularization using the identity. Top:

0.5% noise level (fit-5-0.5.trl); bottom: misfit for the above (misfit-5-0.5.trl).





Chapter 4. Results and discussion 49

True" Calculated

9.-90

simulated g{ip,<f>) re-calculated with tri, 1% noise

-180

G. -90

X
input data

fit

misfit, a= 0.543PE-01

^ MiMdMik kiMil/ip ^ VMM 11 )ifi I \l '>UIV/ i^j ijMM 'V >'

50 100
index (i)

150 200

Figure 4.6: Ramachandran plot from simulated CTDQFD &: 2D MAS exchange measure-

ments, for A<f> = Alp = 5°, Tikhonov regularization using the identity. Top: 1%
noise level (fit-5-l.trl); bottom: misfit for the above (misfit-5-l.trl).
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Figure 4.7: Ramachandran plot from simulated CTDQFD & 2D MAS exchange measure-

ments, for A(f) = Alp = 10°, Tikhonov regularization using the identity. Top:

0.1% noise level (fit-10-O.l.trl); bottom: 0.5% noise level (fit-10-0.5.trl).
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Figure 4.8: Ramachandran plot from simulated CTDQFD & 2D MAS exchange measure-

ments, for A(j) = Alp = 10°, Tikhonov regularization using the identity. Top:

1% noise level (fit-lO-l.trl); bottom: 5% noise level (fit-10-5.trl).
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Figure 4.11: Ramachandran plot from simulated CTDQFD &; 2D MAS exchange measure-

ments, for A(j) = Axjj = 20°, Tikhonov regularization using the identity.

Top: 0.1% noise level (fit-20-O.l.trl); bottom: misfit for the above (misfit-

20-O.l.trl).
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Figure 4.12: Ramachandran plot from simulated CTDQFD & 2D MAS exchange measure-

ments, for Acj) = Alp = 20°, Tikhonov regularization using the identity. Top:

0.5% noise level (fit-20-0.5.trl); bottom: 1% noise level (fit-20-l.trl).
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4.3 Tikhonov regularization using the Laplacian

operator (Tr2)

The operator L mentioned in the previous section is now chosen to be the Laplacian in

spherical coordinates system and the result, gj, is the solution of the following problem:

II
s"' - K' g ||2 + A

II
V^ g 11= =^ min. (4.6)

As we should recall, the torsion angle (p ranges from —180° to 0°, inclusive, and the torsion

angle i) ranges from -180° to +180°, inclusive. The whole range of the (;6-angle can not

be covered through the calculations based on the Laplacian, because in implementing the

Laplacian in spherical coordinates system, as described in chapter 3, the poles must be

excluded. Therefore the structure of the true function g{<l>,'ip) can not be recovered for the

regions {(j),ip) = (-180°, V) and {(i),ip) = {0°,tp).

Again, the SC-method is used to determine optimum values for the regularization pa-

rameter A. As an example. For 5° resolution using 0.1% noise the value obtained for A is

2.0972e-04 which is much smaller than the value, 4.2951e-01, obtained by the Trl-method.

The results and the misfit functions for 5° are given in Figs. 4.13, 4.14 and 4.15. Like Trl-

method, the misfit functions obtained via the Tr2-method are random and no systematic

features appear. Also, for a particular noise level, the standard deviation of the misfit for the

Tr2-method, e.g. a = 0.4214e - 02 for 0.1% noise, is slightly less than the one for the Trl-

method, e.g. a = 0.4682e - 02 for 0.1% noise. This means that in terms of the compatibility

to the data both methods are highly effective.

In terms of the recovering the shape of the true distribution function g{(l),ip), the Tr2-

method is much more successful. By comparing Figs. 4.5 (top) and 4.14 (top), one can see

that the 2D-structure of the true function g is missing in Trl-method, while it is perfectly

recovered in Tr2-method. This is because the Tr2-method introduces a coupling between

the two dimensions in the parameter space, while in Trl-method the two-dimensional {(f),
ip)

space is unwrapped into a long one-dimensional space.

Several other results for 10° resolution are given in Figs. 4.16 and 4.17. Figs 4.15 (top)

and 4.17 (top) show that the Tr2-method, compared to the Trl-method, is able to recover

the shape of the true function g and to provide a high stability for the result even for a

low signal-to-noise ratio. For a very low signal-to-noise ratio, as can be seen in Fig 4.17

(bottom), the result is oversmoothed and the center of the peaks are shifted, although there

is no systematic features showing up and the shape of the true function g is reasonably

recovered. The results for 15° resolution are presented in Figs. 4.18 and 4.19.
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Figure 4.13: Ramachandran plot from simulated CTDQFD &; 2D MAS exchange measure-

ments, for A0 = A^ = 5°, Tikhonov regularization using the Laplacian. Top:

0.1% noise level (fit-5-0.1.tr2); bottom: misfit for the above (misfit-5-0.1.tr2).
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Figure 4.14: Ramachandran plot from simulated CTDQFD k. 2D MAS exchange measure-

ments, for A0 = Ai/) = 5°, Tikhonov regularization using the Laplacian. Top:

0.5% noise level (fit-5-0.5.tr2); bottom: misfit for the above (misfit-5-0.5.tr2).
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Figure 4.15: Ramachandran plot from simulated CTDQFD &: 2D MAS exchange measure-

ments, for A0 = Alp = 5°, Tikhonov regularization using the Laplacian. Top:

1% noise level (fit-5-l.tr2); bottom: misfit for the above (misfit-5-l.tr2).
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Figure 4.16: Ramachandran plot from simulated CTDQFD k 2D MAS exchange measure-

ments, for A0 = Alp = 10°, Tikhonov regularization using the Laplacian. Top:

0.1% noise level (fit-10-0.1.tr2); bottom: 0.5% noise level (fit-10-0.5.tr2).
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Figure 4.17: Ramachandran plot from simulated CTDQFD & 2D MAS exchange measure-

ments, for A(j) = Alp = 10°, Tikhonov regularization using the Laplacian. Top:

1% noise level (fit-10-l.tr2)i bottom: 5% noise level (fit-10-5.tr2).
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Chapter 5

Conclusions

Two-dimensional Fredholm integral equations (FIE) of the first kind

s{u) = [ [ K{oj;<i>,rP)9{cf>,i^)dcl>d^ (5.1)

Jt/i J(t>

can be solved to extract structural information in the form of distribution functions that

are mapped into NMR data. This is an ill-posed inverse problem and the stability of the

solution is an important issue. Regularization techniques are developed to stabilize the

inverse mapping; out of them Tikhonov regularization is known to be the most effective one.

It imposes an additional constraint on the solution g in the form of
||
L p((/>, V') ||^-

We applied inverse theory techniques to extract the local conformations of peptides in the

form of distributions of (^, ip) angle from a set of 2D MAS and CTDQFD data (simulations).

A simple non-negative least-squares (NNLS) approach is first taken to obtain the best fit to

the data

^Ls(p) =111 K{uj;(j),ip)g{(j),ip)d(j)dtp - s{u}) min

.

(5.2)

Then Tikhonov regularization (TR) is applied to stabilize the approximate gx, using L = 1

and L = V2

ng) = ^Ls(^) + A
II
L gf -^ min . (5.3)

It is observed, Fig 5.1, that the TR-methods improve the stability of the solution. ||V^^||^

is an excellent regularization functional. Besides maintaining high compatibility with the

data, it takes into account the 2D nature of the distribution function g{(p, ip), by making use

of the inherently two-dimensional nature of the underlying Ramachandran maps. In Fig 5.2

a comparison between the misfits is shown for NNLS and TR-methods, using different grid

densities. Notice that TR methods are greatly insensitive to grid density, even at high grid

density the misfit has no systematic features and remains small. TR is thus suitable for

greatly underdetermined problems such as the CTDQFD experiments [49] where few data

points (typically 10 points) are available.

The signal-to-noise ratio (SNR) is found to play a crucial rule in the quality of the best-

fit. For signal-to-noise ratio above 100:1 the results show excellent convergence to the true

angle distribution function g{(l), ijj). While, for SNR below 50:1 only a qualitative agreement

is seen.

It is observed that the TR-method, using ||V^5|p, is not sensitive to noise level, Fig 5.3.

Even at low SNR, despite the broadening, the relative population of a-helix and /3-sheet

conformations is preserved (within 11% error), suitable for real data. Also, the ratio of the

populations of a-helix to ,5-sheet conformations is greatly insensitive to grid density (close

to true value 1.5, within 7% error), suitable when very few data points are available.
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Figure 5.1: While NNLS favours discontinuous solutions, the additional constraints intro-

duced by the TR term help recover the original continuous shape of the distri-

bution function.
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