High-Nuclearity Metal Complexes and Single-Molecule Magnets from the Employment of Oximato- and Alkoxido-based Ligands
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The employment of 2-pyrrolyloximes, pyridine-2,6-diketones and 3-hydroxy-2-naphthohydroxamic acid in homometallic 3d- and heterometallic 3d/4f-metal cluster chemistry has yielded new families of Fe, Mn and Mn/Dy clusters. These complexes were shown to possess interesting structural motifs and single-molecule magnetism (SMM) behaviour. The introductory chapter discusses the fundamentals of molecular magnetism, polynuclear metal complexes, as well as the approaches used for the synthesis of new polynuclear metal complexes and the selection criteria for the chelating/bridging ligands. Chapters 2, 3 and 4 report the results of the current thesis. In Chapter 2, the synthesis and characterization of a family of complexes resulting from the employment of 2-pyrrolyloximes in high-nuclearity transition metal cluster chemistry is reported. Complexes {Fe10} (1) and {Fe12} (2) are two of the highest nuclearity iron clusters containing an oximate ligand, while complex 3 is a barrel-like {Mn25Na} complex that exhibits SMM behaviour. Although there are previously reported examples of discrete {Mn25} barrel-like SMMs, complex 3 is the highest nuclearity Mn cluster organized into a 1D polymer through chelation with diamagnetic metal centers. Chapter 3 includes the synthesis and characterization of new Mn complexes featuring ligands that result from the metal-assisted reactivity of pyridyl- and pyrazine-based diketones. Complexes {Mn6} (4) and {Mn10} (5) are the highest nuclearity Mn clusters containing any form of the ligand 2,6-di-(2-pyridylcarbonyl)pyridine [(py)CO(py)CO(py)]. Despite the large number of {Mn6} and {Mn10} complexes reported in the literature, both complexes 4 and 5 possess unique topologies in their respective oxidation state levels. Complex {Mn3Na2} (6) possesses a iii unique metal stoichiometry and is the only compound containing any form of the ligand pyridine-2,6-diylbis(pyrazine-2-ylmethanone) [(pz)CO(py)CO(pz)]. More interestingly, complex 6 contains the first {MnIII3(μ3-O2−)}7+ triangular core where the Mn centers are solely bridged by an oxido group, essentially being a unique ‘edge-naked’ equilateral triangle. In Chapter 4, the synthesis and characterization of complexes bearing the ligand 3-hydroxy-2-naphthohydroxamic acid are presented. The {Mn10} complexes 7 and 8 are the highest nuclearity 3d-metal and the first homometallic Mn clusters containing the hydroxime form of the ligand. Both compounds possess unique metal topologies, which are affected by the nature of the carboxylate ligand present in the reaction mixture, and they behave as SMMs. The use of 3-hydroxy-2-naphthohydroxamic acid in Mn/Dy cluster chemistry has afforded the {Mn4Dy} complexes 9 and 10, as well as a family of {Mn8Dy2} complexes (11 and 12). These compounds are the first Mn/Dy complexes containing this particular hydroxime ligand and they also possess unique metal stoichiometries and topologies. The reported heterometallic products resulted from our efforts to deliberately replace the divalent Mn atoms located in 7 and 8 with DyIII as a means of enhancing the magnetic properties of the former. Complexes 11 and 12 were found to be single-molecule magnets.